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Abstract—The paper studies the process of drawing of glass microcapillaries from hollow cylindrical
preforms, accounting for surface and gravity forces as well as for heat exchange with the surrounding
medium. The quasi-one-dimensional model for hollow fiber drawing is generalized to include heat-transfer
effects. The draw resonance (instability) phenomenon under non-isothermal conditions is studied and
compared with the corresponding effect in the isothermal case. The method permits analysis of various
flow regimes including stable steady-state drawing, sensitivity of fibers to external perturbations, drawing
instability (self-sustained oscillations), and the effect of thermal conditions on the as-spun fibers. The
frequency spectrum and correlation function of the time series corresponding to non-isothermal drawing
are analyzed. The results show that under non-isothermal conditions (an additional degree of freedom)
draw resonance continues to be a quasi-periodic phenomenon with no tendency to chaos. © 1997 Elsevier
Science Ltd.
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1. INTRODUCTION

Stability studies of isothermal drawing of filled (not hollow) fibers brought out the so- called draw
resonance phenomenon, whereby the process loses its stability when the draw ratio E = Vi/V,
exceeds the critical value of 20.22 (Pearson and Matovich 1969, Gelder 1971, Ishihara and Case
1975, Berman and Yarin 1983, Shultz and Davis 1984, and Yarin 1993). Effect of heat removal
on draw resonance of filled fibers was studied in Shah and Pearson (1972a, b), Pearson and Shah
(1973), Demay and Agassant (1982), and Yarin (1986, 1993). By contrast, drawing of hollow fibers
(e.g. optical microcapillaries) earned less attention. The relevant theoretical studies date back to
the works on thin sheets and tubular film flows in Taylor (1959) and Pearson and Petrie (1970a, b).
Draw resonance threshold and arising self-sustained oscillations in isothermal regime of hollow
fiber drawing were studied in Yarin er al. (1994), and the steady-state non-isothermal case was
mvestigated in Yarin et a/. (1989).

The theme of the present work is the effect of heat removal on draw resonance instability of
hollow fiber drawing.

The drawing process is shown schematically in figure 1. A cylindrical glass tube with temperature
T, is transported with a velocity ¥, to a furnace, where it is heated and softens. The dimensions
of the tube are the median surface radius R, and wall thickness 4,, respectively. The tube is drawn
with a velocity V; (> V,) by a receiving device. As a result its radius shrinks to R, (< R,). Outside
the furnace the fiber is also cooled to a temperature 7. The coordinate along the symmetry axis
is denoted by x and varies within the range 0 < x < L, where L is the characteristic draw length.
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Figure 1. (a) Scheme of drawing process; (b) furnace wall temperature.

2. GOVERNING EQUATIONS

The quasi-one-dimensional continuity and momentum equations describing drawing of an
axisymmetric hollow fiber were obtained in Yarin et a/. (1994) using the integral balance method
described in full detail in Yarin (1993). Then in van de Fliert ez al. (1995) the systematic asymptotic
expansion was used resulting in the same set of equations as those described in Yarin et al. (1994)
(only the inertialess case was considered in van de Fliert er a/. 1995). In Lee ef al. (1996) oscillations
of a hollow liquid shell were treated using the integral balance approach of Yarin et al. (1994).
The integral balance approach of Yarin ez a/. (1994) is, in a sense, an asymptotic method employing
the asymptotic expansion of velocity profile in fiber cross-section. Therefore, there is no wonder
that the other asymptotic methods like that of van de Fliert er al. (1995) result in the same

equations.

The equations described in Yarin et al. (1994) employ variables averaged over the fiber
cross-section. Adopting the basic normal, azimuthal and tangent unit vectors n, ¢y and t associated
with the generatrix of the median surface of the fiber wall, one arrives at the following set of

equations (Yarin et al. 1994)
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The following notations are used: R is the median surface radius (R, is its value in the hard
preform); h is the wall thickness of the hollow fiber in direction normal to the median surface (/,
is its value in the hard preform); V. is the liquid velocity along the generatrix of the median surface;
p, o, as well as u and ¢, below are the density, surface tension, viscosity and heat capacity of the
molten glass, respectively; g is gravity acceleration; ¢ is time; x is axial coordinate reckoned along
the axis of the fiber; 4 is the arclength of an element of the generatrix; k is the generatrix curvature;
p1 and p; are the gas pressures inside and outside the cavity of the hollow fiber. Here and hereinafter
the subscripts T and n denote vector projections on the longitudinal and normal directions, in
particular, V, = V-1,

Equation [1] is the continuity equation, while [2] and [3] are, respectively, the projections of the
momentum equation on the tangent and normal to the generatrix of the median surface.
Longitudinal and azimuthal stresses in the fiber are given by the following expressions

20V: 1 2k\ |OR 1 0R
va=2“{[; ox +(ﬁ—7>]5+ megz} “
16V, (2 k\oR . 28R
2o = 2"[1@7 + (zZR - ,1> atVIR 0x:|' 5]

Equations [1]-{5] are supplemented by the expressions for the arclength of the generatrix element
A and the curvature of the generatrix &

dR 1§
1+<6x> k=755 [6]

To clarify the asymptotic nature of [1]-{5], we show here, for example, for the continuity equation
[1] that an asymptotic approach (e.g. of Yarin 1983) beginning from the three-dimensional
continuity equation yields the same result.

To find an asymptotic series for velocity profile in a cross-section of hollow film, we first consider
radius-vectors of the free surfaces

=

i

»

h(x t) n(t, x

Lue(?, X, 0) = ex + R(x, t)e,(8) + ), [7]

where e, and e, are, respectively, the unit vectors of the axial and radial directions.
Velocity at the free surface is defined as

drsurf _ al-surf al“surf %

Yl =740 T A T ox dr (8]
where using [7] we find
al'surf
52' —Re,_z(h1n+hnt) [9]
It _ o 4 R L han + in). [10]
ox & ser 7 W

From geometrical considerations we obtain
n,= —ikt, n,= —iiR,t. [11]

Consider also the liquid particle velocity at some point of the median surface V (absolute velocity),
and the velocity of a point of the median surface with fixed longitudinal and azimuthal coordinates,
U. U is the velocity of the frame of reference associated with the median surface (reference-frame
velocity). The absolute and reference-frame velocities are related as

V= U+igt [12]



970 P. GOSPODINOV and A. L. YARIN

which yields

dx V.- U
a + — (13}
Combining {7}-[11] and [13], we obtain

Vorr = Rie, + A7'(Ve — Udex + A7'(V. — U)R e,

5 [hn — BA72R T + A7V, — U)(han — hiko)]. [14]

The median surface of the film is given as r = R*(x, 0, 1) = exx + R(x, t)e.(6).
Thus using [13] we obtain

*
V= dR = Rter + (ex + Rxer

S dX _ R + A7\Ve— Udex + A '(V. — U)R,e.. [15]

) qr

Hence from [14] using [15] we arrive at the following non-dimensional expression

Var =V + %[h,ln — hATRWT + ANV, — Ul)(han — hikr)) [16]
€= hy/L«<].

Here we use the following scales: Vo—for vy, V and U; h—Ffor 4 and the coordinate along the
normal y (see below); L—for x and R; L/V,—for t; 1/L—for k, as well as for the nabla-operator
V and A below.

Velocity profile v in a cross-section should be represented by the following asymptotic series

v=V + cAy + O(&). [17]
At y = +h/2 it should yield [16], which allows to find A and to obtain v in the form

+e—[hxn — hA7 Ryt + A7V, — U)(h.n — hikT)]. [18]

The continuity equation, as usual, has the form
Vovy=0 [19]
where according to Yarin et al. (1994), in the non-dimensional form

_1 5 e(;a 38
V_Z +R69+116 + O(¢) [20}

(eo is the unit vector of the azimuthal direction).
Substituting [18] in [19] and using [20] accounting for the first expression from [11] and the
following geometric relations

ng=A"y; 19=A"R,ey; T.= Akn, [21]
we arrive at the continuity equation for the leading order of magnitude
W'+ 27 (Ve = Udh] + AR) 'RV + A7V + AR)'V, — kV, = 0. [22]
The normal velocity ¥V, reads (Yarin et al. 1994)
V.=A4"'R,. [23]
Accounting for the expression for k in [6] and [23] we obtain
(AR)™'WVu — kVy= (2R)"'Ri[l — RRA/(1 + RY)]. [24]
Substituting [24] in [22] and multiplying by RAZ4, we obtain
RAh, + RhV x + R(V. — Uhy + hR,V, + A7'hR[1 — RR /(1 + R))] = 0. [25]
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We prove now that [25] is identical with the continuity equation [1] obtained by means of the
integral balance method. Indeed, from [1] we obtain

hAR, + RAh, + RhA, + RV, — U) + Rh, (V. — U)) + Rh(V.y — U.y) = 0. [26]

From the expression [6] for A we obtain

Av=AT'RyRy. [27]
Since U = 0R*/0t = Re,,
U. = i"'R.R.. (28]
Using [27] and [28] we obtain
RhA, — hRU. — RhU.x = — RhR(A"'R)x — A7'hRAR, [29]

and thus [26] reduces to
RAh.+ R AV, + R(V. — U)hy+ RhV.x + hAR, — RhAR(A7'R )« — AHRAR, = 0.  [30]
Using the expression for A from [6], we rearrange the last three terms on the left in [29] to the form
hiR. — RAR (27 'R}, — A7'hRAR, = A7'hR,[1 — RR/(1 + R%)] [31]

which shows that [30] is indeed identical with the asymptotic result [25]. Therefore, we indeed
obtained the continuity equation [1] by means of the asymptotic expansion of the three-dimensional
continuity equation [19].

The momentum equation might be obtained similarly.

As usual, the asymptotic approach is much more involved than the approach based on the
integral balance method. The reason for this is the fact that three-dimensional differential equations
of hydrodynamics have been obtained from the integral balance equations, and to arrive at the
reduced quasi-one- (or two-) dimensional equations it is worth it to begin directly from the integral
balance equations.

It is emphasized that the quasi-one-dimensional equations [1]-[5] are valid in the long wave
approximation when h//«1 (! being a characteristic scale in the longitudinal direction). This
restriction does not imply that, in general, kR« 1 and dR/0x«1 (kR =~ 0, 1 = 1), since R>h. In
the linear stability analysis of section 3 in Yarin er al. (1994) gently sloping hollow fibers were
assumed, with kR« | and éR/dx « 1. However, in Yarin et al. (1994) it was also shown that these
inequalities do not necessarily hold in fibers with finite perturbations, which are also considered
in the present work. Therefore, we retain the corresponding terms in [1]-[3].

It should also be noted, that in Yarin ef a/. (1994) it was shown that small perturbations of
isothermal, gently sloping filled and hollow fibers dominated by viscous force are governed by
similar equations yielding identical instability thresholds. In the present work we treat large
perturbations of non-isothermal hollow fibers in the situation when surface tension and gravity
forces are of importance (as well as the inertial ones, to less extent), and the problem on hollow
fibers cannot be reduced to that for the filled ones.

Note also that factors (V, — 27'R.R,) on the left in [1]-{3], which are identical with (V. — U.)
according to [28] appear due to the fact that in a non-stationary case the frame of reference
associated with the median surface moves with velocity U and thus the transfer of mass and
momentum relative to a cross-section with a fixed value of x occurs at a velocity
(V—U)-z=V. — U.. Similar factors appear in the theory of bending perturbations of filled free
liquid jets moving in air with a high speed (Yarin 1993; Entov and Yarin 1984).

In non-isothermal flow, the viscosity of molten glass (the fiber-forming material) is a function
of temperature, obeying the Arrhenius-type law (Doremus 1973)

A
H=H exp(m) (32]
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where u, and A denote the pre-exponential factor and the activation energy, R, is the universal
gas constant and T is the temperature. The latter is governed by the quasi-one-dimensional
equation of energy balance

0 , é 1 0R 4R
pcp{g; (RhAT) + 5= [Rh( Vim s 6~c> T]} = —(qn1 + gu2)AR, [33]
where heat conduction along the fiber is negligible relative to the heat exchange with the
environment. The radiative heat flux in the outside normal direction is denoted by ¢.., and its
convective counterpart by g.»

o1 = o€[T* — T(x)] [34]

Gn2 = B(X) [T—Te(x)). (35]

The furnace wall temperature distribution is denoted by T, the effective gas temperature far from
the fiber by T%, ¢ is the emissivity of the fiber surface, § is the convective heat transfer coefficient,
oy = 5.68-107F W/(m? °K*) is the Stefan-Boltzmann constant.

Note that only heat exchange with the gas outside the fiber is accounted for, since heat losses
into the fiber cavity are negligibly small.

The furnace wall temperature distribution is taken in the following form (see figure 1)

Tin+(Tm_ 7—‘in)'-x/Ll for 0<X<L|

T, for Li<x< L,

Tr(x) = T T 7oy X L, for L L
_ — <x<

m ( m out) L3 — L: or T R XK Ls

TE.nul fOI' L3 S X < L,

where T, is the temperature of the gas environment outside the furnace, and T, T and T,y
are the temperatures of the furnace wall at the inlet, middle and outlet of the furnace (see figure 1).

The effective temperature of the gas environment in the furnace is taken as the average of the
fiber and furnace-wall temperatures

Te(x) = TOLETel), [37]

Given no external disturbances (dealing only with the stability problem), the constant input and
output fiber velocities V, and ¥V, as well as the initial median surface radius R,, wall thickness A,
and temperature Ty are involved in the boundary conditions

Vr= V(), R=R0, h_—‘h(), T:-To at x:()
V.=V, at x=0L. [38]

The steady-state solutions of Yarin et al. (1989) serve as the initial conditions for the stability
problem

Vi=@i(x), R=@ix), h=¢s(x), T=@ix). [39]

The problem posed above was normalized using the following scales: L/V, for ¢, L for x, Ry E~'7?
for R (draw ratio E = V,/V,), hhE~'? for h, V, for V,, T, for T. The following non-dimensional
groups appear in the equations and initial and boundary conditions

Vi

gRy

Re = p—RiﬁAReynolds number, Fr = Froude number,

Eu=2"2" Eyler number,
pVi
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E—I;iR—O——Weber number, Bo = £ 2%Y\ Boltzmann number,

We = P

E = V,/Vy—draw ratio,

A

= Ry

T = L/Ro, 3 = ho/Ro.
In the non-isothermal case the value of yu, is used instead of u to calculate Re.

The heat-transfer parameter § is calculated from the expression given by Ishihara and Kase
(1975)

B(x) = Nu-R(x)~*- Ve(x) ™" (40]
(B, R and V, are non-dimensional) where the Nusselt number Nu is given by
Nu = 1.983 x 10~*z~"3/(pc, VI’ R3"). [41]

Note that the numerical factor in [41] has a dimension kg-m"3/(s**-°K).

3. NUMERICAL IMPLEMENTATION, RESULTS AND DISCUSSION

A modified version of the algorithm developed in Yarin et al. (1994), and Gospodinov and
Roussinov (1993a, b) was employed in the present work. The initial-value problem [1]-[3] and [33]
was solved by a direct implicit scheme of the Crank—Nicholson type. Nonsymmetric
approximations of the derivatives R, /., and T, and symmetric ones for V.., V.., and R, are
used, with accuracy of the approximation O(Ax?). The time derivatives of R, h, V, and T are
approximated using a two-layer scheme with accuracy O(A¢). Some more details on the numerical
implementation might be found in Yarin et al. (1994).

The following values were used for the parameters in the simulations: p = 3000 kg/m?,
o = 0.25N/m, ¢, = 1000 J/(kg-°K), V,=0.05m/s, Ry =0.005m, A, = 0.001 m, L =0.15m, and
¢=0.8.

Two basic cases are considered here. The first is an isothermal process taking place under a
constant temperature of approximately 1000°K (which is also the scale temperature 7,,). The
material viscosity is u = uo = 10° Pa-s and the corresponding Reynolds number Re=7.5 x 10~°.
In this case there is no need to solve the energy equation. In the second, non-isothermal case the
temperatures at the entrance and exit of the furnace, and that of the gas surrounding the fiber after
it leaves the furnace, Ti,, Tow and Te.,, are taken as 0.9 T,, (with T,, = 1000°K), and L,/L = 0.3,
L,/L =0.5,and L;/L = 0.75. The Reynolds number corresponding to the non-isothermal case was

=82 x 1072

The following values were used for the non-dimensional groups in both cases: Fr = 0.051,
Eu=0.23 x 10, We = 0.15, Bo = 2.64 x 10°, n, = 6, m, = 30, n; = 0.2, and Nu = 8.375 x 1072,
Under the given conditions the steady-state value of the radius of the as-spun fiber is
R(1, 0) = 0.964, since for Eu > 0 outside pressure is larger than the inside one.

Self-sustained oscillations (a fully developed draw resonance) of the radius of the as-spun hollow
fiber emerging at the supercritical draw ratio of 400 after the draw resonance sets in are shown
in figure 2. It is seen that in the non-isothermal case the effect of cooling manifests itself in reduction
of the period and amplitude of the oscillations. A similar trend was found in non-isothermal
drawing of filled fibers in Yarin (1986, 1993) where self-sustained oscillations were of smaller
amplitude in the non-isothermal case when draw ratio was the same as in a corresponding
isothermal one. To resolve the nature of arising self-sustained oscillations corresponding to fully
developed draw resonance (after the transient is over) the spectral power density P and the
correlation function F were studied:

Pw) =3 [5% J RY(, t)dt] 'Rz“’(gﬂ [42]
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Figure 2. Development of self-sustained oscillations in isothermal and non-isothermal cases: £ = 400. (a)
isothermal case; (b) non-isothermal case.

with

P
Ry = j R(1, e’ dt

—-®

]

Flz) = % J R(L, OR( + t)dt [43]

0

as the period ® tends to infinity.

In the numerical implementation Re was found using a standard FFT-algorithm. |Re|* = Re- RE,
where the star superscript denotes the complex conjugate.

The spectral power corresponding to figure 2(a) and (b), is shown in figure 3(a) and (b),
respectively. It brings out the multimodal quasiperiodic character of the highly nonlinear
oscillations in fully developed draw resonance. The frequency corresponding to the highest spectral
peak is w = 0.0414 and w = 0.0568 in the isothermal and non-isothermal cases, respectively.

The correlation functions corresponding to the isothermal and non-isothermal cases of figure 2
are plotted in figure 4. In evaluating it, the period ® was taken as 300. In both cases the correlation
function approaches a periodic behavior, as is foreseen for periodic time series. Variation of the
governing parameters did not result in a tendency to any chaotic behavior of the oscillations. A
similar situation was found before for the filled-fiber drawing in Yarin (1986, 1993).

.10’ 10
12} (@) | 12} (b) |
P@) | p Py ]
8t 8t
41 4 41
0 02 04 06 0.8 1 0 02 04 06 038 1
(V) Q)

Figure 3. Distribution of the spectral power density corresponding to figure 2(a) and (b). respectively.
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Figure 4. Correlation functions corresponding to figure 2. (a) Isothermal case; (b) non-isothermal case.

The temperature of the as-spun hollow fiber at the receiving device oscillates under the
non-isothermal draw resonance regime as per figure 5. The temperature time series is also
quasiperiodic.

4. CONCLUSION

The approach developed in the present work allows one to predict the behavior of a spinline in
the case of non-isothermal drawing of hollow fibers (optical microcapillaries). The effect of fiber
cooling on the characteristics of the draw resonance is studied. The method can be also employed
for prediction of the effect of external excitation on the characteristics of as-spun hollow fibers.
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Figure 5. Non-isothermal case: (a) fiber temperature oscillations at the receiving device (x = 1); (b)
distribution of the spectral power density corresponding to the temperature time series.
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Cooling reduces period and amplitude of self-sustained oscillations arising due to draw resonance
as compared to the isothermal case. The latter is similar to that found previously for the filled fiber
drawing.

Analysis of the spectral power density and the correlation function corresponding to radius and
temperature variation of as-spun hollow fibers shows that self-sustained oscillations continue to
be quasiperiodic. No tendency to chaos was found in spite of the fact that a new degree of freedom
(temperature variation) was involved.
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