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Abstract--The paper studies the process of drawing of glass microcapillaries from hollow cylindrical 
preforms, accounting for surface and gravity forces as well as for heat exchange with the surrounding 
medium. The quasi-one-dimensional model for hollow fiber drawing is generalized to include heat-transfer 
effects. The draw resonance (instability) phenomenon under non-isothermal conditions is studied and 
compared with the corresponding effect in the isothermal case. The method permits analysis of various 
flow regimes including stable steady-state drawing, sensitivity of fibers to external perturbations, drawing 
instability (self-sustained oscillations), and the effect of thermal conditions on the as-spun fibers. The 
frequency spectrum and correlation function of the time series corresponding to non-isothermal drawing 
are analyzed. The results show that under non-isothermal conditions (an additional degree of freedom) 
draw resonance continues to be a quasi-periodic phenomenon with no tendency to chaos. © 1997 Elsevier 
Science Ltd. 
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1. I N T R O D U C T I O N  

Stabi l i ty  studies o f  i so thermal  d rawing  o f  filled (not  hol low) fibers b rough t  out  the so- called d raw 
resonance  phenomenon ,  whereby  the process  loses its s tabi l i ty  when the d raw ra t io  E = V~/Vo 

exceeds the cri t ical  value o f  20.22 (Pearson and Ma tov ich  1969, Ge lder  1971, I sh ihara  and  Case 
1975, Berman and Yar in  1983, Shultz  and  Davis  1984, and  Yar in  1993). Effect o f  heat  removal  
on draw resonance  o f  filled fibers was s tudied in Shah and Pearson  (1972a, b), Pearson  and Shah 
(1973), D e m a y  and Agassan t  (1982), and  Yar in  (1986, 1993). By contras t ,  d rawing  o f  hol low fibers 
(e.g. opt ical  microcapi l lar ies)  earned  less a t tent ion .  The relevant  theoret ical  studies da te  back  to 
the works  on thin sheets and  tubu la r  film flows in Tay lo r  (1959) and Pearson  and Petrie (1970a, b). 
Draw resonance  threshold  and ar is ing self-sustained osci l la t ions in i so thermal  regime o f  hol low 
fiber d rawing  were s tudied in Yar in  et  al. (1994), and  the s teady-s ta te  non- i so the rmal  case was 
invest igated in Yar in  et  al. (1989). 

The  theme o f  the present  work  is the effect o f  heat  removal  on d raw resonance  instabi l i ty  o f  
hol low fiber drawing.  

The  d rawing  process  is shown schemat ica l ly  in figure 1. A cyl indrical  glass tube with t empera tu re  
To is t r anspor ted  with a velocity V0 to a furnace,  where it is heated and  softens. The  d imensions  
o f  the tube are the median  surface radius  R0 and wall thickness h0, respectively.  The tube is d rawn 
with a veloci ty V~ ( >  V0) by a receiving device. As  a result  its rad ius  shr inks  to R~ ( <  R0). Outs ide  
the furnace the fiber is also cooled to a t empera tu re  T~. The coord ina t e  a long  the symmet ry  axis 
is deno ted  by x and varies within the range 0 ~< x ~< L,  where L is the character is t ic  d r aw  length. 
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Figure 1. (a) Scheme of drawing process; (b) furnace wall temperature. 

2. GOVERNING EQUATIONS 

The quasi-one-dimensional continuity and momentum equations describing drawing of an 
axisymmetric hollow fiber were obtained in Yarin et al. (1994) using the integral balance method 
described in full detail in Yarin (1993). Then in van de Fliert et al. (1995) the systematic asymptotic 
expansion was used resulting in the same set of equations as those described in Yarin et al. (1994) 
(only the inertialess case was considered in van de Fliert et al. 1995). In Lee et al. (1996) oscillations 
of  a hollow liquid shell were treated using the integral balance approach of Yarin et al. (1994). 
The integral balance approach of Yarin et al. (1994) is, in a sense, an asymptotic method employing 
the asymptotic expansion of velocity profile in fiber cross-section. Therefore, there is no wonder 
that the other asymptotic methods like that of van de Fliert et al. (1995) result in the same 
equations. 

The equations described in Yarin et al. (1994) employ variables averaged over the fiber 
cross-section. Adopting the basic normal, azimuthal and tangent unit vectors n, e0 and • associated 
with the generatrix of the median surface of the fiber wall, one arrives at the following set of 
equations (Yarin et al. 1994) 

(Rh2)+  Rh V¢ 2 Ot ~ = 0  [11 

p R  + R  V~ 
1 OROR~OV~ RhOR O:R 
2 Ot ~ J  Ox 22 Ot OxOt 

hV¢kn ~ + - ~ -  

=fl-~Ox ( ~ R h )  - Zooh ~x + pgRh 

;. at ax a t j  b-- t 

aR 
=Z~h2kR - Zooh + 2~(flkR - 1) + (p~ -p : )Rf l  -- pghR-~x" 

[21 

[3] 
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The following notations are used: R is the median surface radius (R0 is its value in the hard 
preform); h is the wall thickness of the hollow fiber in direction normal to the median surface (h0 
is its value in the hard preform); V~ is the liquid velocity along the generatrix of the median surface; 
p, a, as well as p and cp below are the density, surface tension, viscosity and heat capacity of the 
molten glass, respectively; g is gravity acceleration; t is time; x is axial coordinate reckoned along 
the axis of  the fiber; 2 is the arclength of  an element of  the generatrix; k is the generatrix curvature; 
p~ and p2 are the gas pressures inside and outside the cavity of the hollow fiber. Here and hereinafter 
the subscripts ~ and n denote vector projections on the longitudinal and normal directions, in 
particular, V~ = V.~. 

Equation [1] is the continuity equation, while [2] and [3] are, respectively, the projections of  the 
momentum equation on the tangent and normal to the generatrix of the median surface. 
Longitudinal and azimuthal stresses in the fiber are given by the following expressions 

z~=2~ -~-x + ~ -h -+ ~R~xj [41 

Zoo=2~, ~--~-+ ~r R N-+ v ~ j .  [5] 

Equations [I]-[5] are supplemented by the expressions for the arclength of the generatrix element 
2 and the curvature of  the generatrix k 

( R5 10 R 
2 =  1 + \ t 3 x ] ,  k - 2 3 t 3 x 2 .  [6] 

To clarify the asymptotic nature of [1]-[5], we show here, for example, for the continuity equation 
[1] that an asymptotic approach (e.g. of Yarin 1983) beginning from the three-dimensional 
continuity equation yields the same result. 

To find an asymptotic series for velocity profile in a cross-section of hollow film, we first consider 
radius-vectors of  the free surfaces 

r~u,~(t, x, O) = e~x + R(x, t)er(O) +_ ~ n(t, x, 0), [7] 

where ex and er are, respectively, the unit vectors of the axial and radial directions. 
Velocity at the free surface is defined as 

dr~f 8r~rf -~- 8rsurf d x  
Ysurf-- dt - ~- ~ ~-~, [8] 

where using [7] we find 

1 
8r~.~f~3t -- Rte,. _+ ~ (h:n + hnt) [9] 

6~rsurf 1 
c~ x -- ex + R,xer + ~ (hxn + hn.0. [10] 

From geometrical considerations we obtain 

n~ = -2k~ ,  n t = -2-"Rx,~. [11] 

Consider also the liquid particle velocity at some point of the median surface V (absolute velocity), 
and the velocity of  a point of  the median surface with fixed longitudinal and azimuthal coordinates, 
U. U is the velocity of the frame of reference associated with the median surface (reference-frame 
velocity), The absolute and reference-frame velocities are related as 

v=u+ ,~  dx 
dt T [12] 
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which yields 

Combin ing  [7]-[11] and [13], we obtain  
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dx  V~ -- Ur 
+ - -  [ 1 3 1  

dt 2 

1 
± ~  [htn - h2-ZRxt~ + 2-'(V~ - U~)(h.xn - h2k~)]. [14] 

The  median surface of  the film is given as r = R*(x, O, t) = exX + R ( x ,  t)er(O). 
Thus  using [13] we obtain  

dR* dx 
V -  dt - R.ter + (ex + R x e r ) - ~  = R:er + 2 ' ( V ~ - U ~ ) e ~ + 2  ~(Vr-- UT)R~er. [15] 

Hence f rom [14] using [15] we arrive at the following non-dimensional  expression 

v s , r r=Vq-  ~ ~ [h:n - h2-2R~tz. + 2-~(Vr - U~)(h~n. - h2kT)] [16] 

E = ho/L << 1. 

Here  we use the following scales: V0--for V~,rr, V and U; h0--for  h and the coordinate  along the 
normal  y (see below); L - - f o r  x and R; L / V o - - f o r  t; 1 / L - - f o r  k, as well as for the nab la -opera to r  
V and A below. 

Velocity profile v in a cross-section should be represented by the following asymptot ic  series 

v = V -4- ~:Ay + O(E2). [17] 

At  y = +_h/2 it should yield [16], which allows to find A and to obta in  v in the form 

= V + c ~  [h.tn - hA 2Rx~ + 2-'(V~ - U~)(hxn - hake)]. [18] ¥ 

The continui ty equat ion,  as usual, has the fo rm 

V-v=O [19] 

where according to Yarin et al. (1994), in the non-dimensional  fo rm 

v n + 00 + + O(E) [20] XYxx 

(e0 is the unit vector  o f  the azimuthal  direction). 
Substi tut ing [18] in [19] and using [20] account ing for the first expression f rom [11] and the 

following geometr ic  relations 

n,o = 2-1e0; ~,o = 2-1R.~e0; ~.~ = ),kn, [21] 

we arrive at  the cont inui ty equat ion for the leading order  of  magni tude  

h-'[h: + 2-'(V~ - U~)h~] + (2R)- 'R,~V,  + 2-~V~.~ + (2R) - '  V, -- k i n  = 0. [22] 

The  normal  velocity V, reads (Yarin et al. 1994) 

V. = 2 ' R.,. [23] 

Account ing  for the expression for  k in [6] and [23] we obtain  

(2R) - '  V, - k V ,  = (22R)-'R,,[1 -- RR.xd(1 + R2~)]. [24] 

Substi tut ing [24] in [22] and mult iplying by Rh2, we obtain  

R2h., + RhG.~ + R(V ,  - U~)h.x + hR.xV~ + 2- 'hR:[1 - Rn,~d(1 + R2~)] = 0. [251 
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We prove now that [25] is identical with the continuity equation [1] obtained by means of the 
integral balance method. Indeed, from [1] we obtain 

h2R~ + R2h~ + Rh2~ + R xh(V, - U~) + Rhx(V~ - U,) + Rh(V,,~ - U~.~) = 0. [26] 

From the expression [6] for 2 we obtain 

2, = 2-1R.xRx~. [27] 

Since U = OR*lOt = R~e~, 

U, = 2 - 'R . ,Rx .  [28] 

Using [27] and [28] we obtain 

Rh2 ,  - hRx U, - Rh  U~.x = - RhR.~(2-'  R.x).x - 2-'hR!x R [291 

and thus [26] reduces to 

R2h~ + R xhV~ + R(V~ - U~)hx + RhV~.x + h2R., - RhRt(2-1Rx) .x  -- 2-~hR2xRt = O. [30] 

Using the expression for 2 from [6], we rearrange the last three terms on the left in [29] to the form 

h,~R.t - RhR,t(}.-1Rx).~ - ,~-~hR2~R = ,,].-~hRt[1 - RR.xx/(l q- R~x)] [311 

which shows that [30] is indeed identical with the asymptotic result [25]. Therefore, we indeed 
obtained the continuity equation [I] by means of the asymptotic expansion of the three-dimensional 
continuity equation [19]. 

The momentum equation might be obtained similarly. 
As usual, the asymptotic approach is much more involved than the approach based on the 

integral balance method. The reason for this is the fact that three-dimensional differential equations 
of hydrodynamics have been obtained from the integral balance equations, and to arrive at the 
reduced quasi-one- (or two-) dimensional equations it is worth it to begin directly from the integral 
balance equations. 

It is emphasized that the quasi-one-dimensional equations [1]-[5] are valid in the long wave 
approximation when h/l<<l (! being a characteristic scale in the longitudinal direction). This 
restriction does not imply that, in general, kR<< 1 and ?R/Ox<< 1 ( k R  ~ 0, 2 ,~ 1), since R>>h. In 
the linear stability analysis of section 3 in Yarin et al. (1994) gently sloping hollow fibers were 
assumed, with kR<< 1 and 3R/?x<< 1. However, in Yarin et al. (1994) it was also shown that these 
inequalities do not necessarily hold in fibers with finite perturbations, which are also considered 
in the present work. Therefore, we retain the corresponding terms in [1]-[3]. 

It should also be noted, that in Yarin et al. (1994) it was shown that small perturbations of 
isothermal, gently sloping filled and hollow fibers dominated by viscous force are governed by 
similar equations yielding identical instability thresholds. In the present work we treat large 
perturbations of non-isothermal hollow fibers in the situation when surface tension and gravity 
forces are of importance (as well as the inertial ones, to less extent), and the problem on hollow 
fibers cannot be reduced to that for the filled ones. 

Note also that factors (V, - 2-1R~R.~) on the left in [1]-[3], which are identical with (V~ - U~) 
according to [28] appear due to the fact that in a non-stationary case the frame of reference 
associated with the median surface moves with velocity U and thus the transfer of  mass and 
momentum relative to a cross-section with a fixed value of  x occurs at a velocity 
(V - U).T= V~ - U~. Similar factors appear in the theory of  bending perturbations of filled free 
liquid jets moving in air with a high speed (Yarin 1993; Entov and Yarin 1984). 

In non-isothermal flow, the viscosity of molten glass (the fiber-forming material) is a function 
of temperature, obeying the Arrhenius-type law (Doremus 1973) 

 0exp(  I321 
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where #0 and A denote the pre-exponential factor and the activation energy, Rg is the universal 
gas constant and T is the temperature. The latter is governed by the quasi-one-dimensional 
equation of energy balance 

pcp ~ ( R h 2 T ) +  . Rh V~ ~ #t ~ T = - ( q , . , + q , , 2 ) 2 R ,  [331 

where heat conduction along the fiber is negligible relative to the heat exchange with the 
environment. The radiative heat flux in the outside normal direction is denoted by qn,~, and its 
convective counterpart by qn._~ 

q,, = O-oE[T 4 - -  T 4 ( x ) ]  [341 

qn,: = f l ( x ) ' [ T - -  TE(X) ] .  [351 

The furnace wall temperature distribution is denoted by TF, the effective gas temperature far from 
the fiber by TE, e is the emissivity of the fiber surface,/~ is the convective heat transfer coefficient, 
~0 = 5.68" 10 x W/(m2 °K 4) is the Stefan-Boltzmann constant. 

Note that only heat exchange with the gas outside the fiber is accounted for, since heat losses 
into the fiber cavity are negligibly small. 

The furnace wall temperature distribution is taken in the following form (see figure 1) 

f T~n + (Tin - ~ , , ) . x /L ,  for 0 ~ x  ~< L, 

Tm f o r  L I  ~. x ~ L2  

Tv(x)  = x -- Lz for L2 ~< x ~< L~ 
Tm - -  (7"., - -  Tout) L3  - -  L2  

TE.ou~ for Ls ~< x ~< L, 

where TE .... is the temperature of the gas environment outside the furnace, and T~,, Tm and To., 
are the temperatures of the furnace wall at the inlet, middle and outlet of the furnace (see figure l). 

The effective temperature of the gas environment in the furnace is taken as the average of the 
fiber and furnace-wall temperatures 

TE(X) -- T (x )  + Tv(x)  [37] 
2 

Given no external disturbances (dealing only with the stability problem), the constant input and 
output fiber velocities V0 and Vl, as well as the initial median surface radius R0, wall thickness h0 
and temperature To are involved in the boundary conditions 

V~= Vo, R = R 0 ,  h = h 0 ,  T =  To at x = 0  

V~= V,, at x = L .  [38] 

The steady-state solutions of Yarin et al. (1989) serve as the initial conditions for the stability 
problem 

V~ = q~,(x), R = q~ffx), h = ~03(x), T = q~,(x). [391 

The problem posed above was normalized using the following scales: L~ VI for t, L for x ,  RoE ,..2 
for R (draw ratio E = G/Vo),  hoE -~/2 for h, G for V~, Tm for T. The following non-dimensional 
groups appear in the equations and initial and boundary conditions 

Re - pRo VI -Reynolds number, Fr = Froude number, 

Eu p2 -- pL - P ~  Euler number, 
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p e p  Vl  ~ ,. 
We - p ~Rocr Weber number, Bo = ~O---~-~3m ~ o l t z m a n n _  number, 
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E = V~/V0---draw ratio, 

A 
7Zl-RgTm, x 2 = L / R 0 ,  x3=ho/Ro. 

In the non-isothermal case the value of p0 is used instead of p to calculate Re. 
The heat-transfer parameter  fl is calculated from the expression given by Ishihara and Kase 

(1975) 

/~(x) = Nu" R(x) -2/3" V~ (x)-,,'3 [40] 

(fl, R and V~ are non-dimensional) where the Nusselt number Nu is given by 

Nu = 1.983 x lO-"x-'/3/(pcp ~/3RZo/3 ). [41] 

Note that the numerical factor in [41] has a dimension kg.m~/3/(s8/3.°K). 

3. N U M E R I C A L  IMPLEMENTATION,  RESULTS AND DISCUSSION 

A modified version of  the algorithm developed in Yarin et al. (1994), and Gospodinov and 
Roussinov (1993a, b) was employed in the present work. The initial-value problem [1]-[3] and [33] 
was solved by a direct implicit scheme of the Crank-Nicholson type. Nonsymmetric 
approximations of  the derivatives R.x, h,x, and T.x, and symmetric ones for V~.x, V~ .... and R,xx are 
used, with accuracy of  the approximation O(Ax2). The time derivatives of  R, h, V~ and T are 
approximated using a two-layer scheme with accuracy O(At). Some more details on the numerical 
implementation might be found in Yarin et al. (1994). 

The following values were used for the parameters in the simulations: p = 3000 kg/m 3, 
tr = 0.25 N/m, co = 1000 J/(kg '°K),  V~=0.05 m/s, R0 = 0.005 m, h0 = 0.001 m, L = 0.15 m, and 
E =0 .8 .  

Two basic cases are considered here. The first is an isothermal process taking place under a 
constant temperature of  approximately 1000°K (which is also the scale temperature Tin). The 
material viscosity is/~ =/~0 = 105 Pa.s and the corresponding Reynolds number Re=7 .5  × 10 -6. 
In this case there is no need to solve the energy equation. In the second, non-isothermal case the 
temperatures at the entrance and exit of  the furnace, and that of  the gas surrounding the fiber after 
it leaves the furnace, T~,, Tou, and TE . . . . .  are taken as 0.9 Tm (with Tm = 1000°K), and L,/L = 0.3, 
L2/L = 0.5, and L3/L = 0.75. The Reynolds number corresponding to the non-isothermal case was 
Re = 8.2 x 10 -3. 

The following values were used for the non-dimensional groups in both cases: Fr = 0.051, 
Eu = 0.23 x 102 , We = 0.15, Bo = 2.64 x 103 , nl = 6, n2 = 30, x3 = 0.2, and Nu = 8.375 x 10 -8 . 
Under the given conditions the steady-state value of the radius of  the as-spun fiber is 
R(1, 0) = 0.964, since for Eu > 0 outside pressure is larger than the inside one. 

Self-sustained oscillations (a fully developed draw resonance) of  the radius of  the as-spun hollow 
fiber emerging at the supercritical draw ratio of  400 after the draw resonance sets in are shown 
in figure 2. It is seen that in the non-isothermal case the effect of  cooling manifests itself in reduction 
of  the period and amplitude of  the oscillations. A similar trend was found in non-isothermal 
drawing of  filled fibers in Yarin (1986, 1993) where self-sustained oscillations were of  smaller 
amplitude in the non-isothermal case when draw ratio was the same as in a corresponding 
isothermal one. To resolve the nature of  arising self-sustained oscillations corresponding to fully 
developed draw resonance (after the transient is over) the spectral power density P and the 
correlation function F were studied: 

P(~o) = ~ ~-~ R2(1, t ) d t  - 2 r t ~  [42] 
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Figure 2. Development of self-sustained oscillations in isothermal and non-isothermal cases: E = 4(10. (a) 

isothermal case; (b) non-isothermal case. 

with 

R® = f**R(1, t )e-"" dt 

lI° 
F(r)  = ~ R(1, t)R(t + r)dt [431 

as the period cI) tends to infinity. 
In the numerical  implementa t ion  R ,  was found using a s tandard FFT-a lgor i thm.  [R®]: = R.. Rg, 

where the star superscript  denotes the complex  conjugate.  
The spectral  power  corresponding to figure 2(a) and (b), is shown in figure 3(a) and (b), 

respectively. It  brings out  the mul t imoda l  quasiperiodic character  of  the highly nonlinear  
oscillations in fully developed draw resonance.  The frequency corresponding to the highest spectral 
peak  is e) = 0.0414 and co = 0.0568 in the isothermal  and non- iso thermal  cases, respectively. 

The correlat ion functions corresponding to the isothermal  and non- isothermal  cases of  figure 2 
are plot ted in figure 4. In evaluat ing it, the period (b was taken as 300. In both cases the correlat ion 
funct ion approaches  a periodic behavior ,  as is foreseen for periodic t ime series. Variat ion of  the 
governing pa ramete r s  did not  result in a tendency to any chaotic  behavior  of  the oscillations. A 
similar si tuation was found before for the filled-fiber drawing in Yarin (1986, 1993). 
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Figure 3. Distribution of the spectral power density corresponding to figure 2(a) and (b), respectively. 
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Figure 4. Correlation functions corresponding to figure 2. (a) Isothermal case; (b) non-isothermal case. 

The temperature of the as-spun hollow fiber at the receiving device oscillates under the 
non-isothermal draw resonance regime as per figure 5. The temperature time series is also 
quasiperiodic. 

4. C O N C L U S I O N  

The approach developed in the present work allows one to predict the behavior of a spinline in 
the case of non-isothermal drawing of hollow fibers (optical microcapillaries). The effect of fiber 
cooling on the characteristics of the draw resonance is studied. The method can be also employed 
for prediction of the effect of external excitation on the characteristics of as-spun hollow fibers. 
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Figure 5. Non-isothermal case: (a) fiber temperature oscillations at the receiving device (x = 1); (b) 
distribution of the spectral power density corresponding to the temperature time series. 
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Cooling reduces period and amplitude of self-sustained oscillations arising due to draw resonance 
as compared to the isothermal case. The latter is similar to that found previously for the filled fiber 
drawing. 

Analysis of the spectral power density and the correlation function corresponding to radius and 
temperature variation of as-spun hollow fibers shows that self-sustained oscillations continue to 
be quasiperiodic. No tendency to chaos was found in spite of the fact that a new degree of freedom 
(temperature variation) was involved. 
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